R语言实战 (美)罗伯特 · I. 卡巴科弗(Robert I. Kabacoff)

  • $32.00



  • 所有圖書 滿 $29 free ship
  • Paypal Credit Debit Card 安全支付
  • 空運5-10天交付 [北美歐盟亞太]
  • 7天退換 正版保證 Amazon全網比價
  • +微信[sowe-inc] 7x24小時客服服務

  • 获30万中文版读者认可与好评的数据分析教程重磅升级,给你入门R的"标准答案".统计之都秘书长王小宁推荐阅读,有效学习统计分析及数据可视化的方法与技巧.
    书名:R语言实战(第3版)
    ISBN:9787115615039
    作者:[美]罗伯特 · I. 卡巴科弗(Robert I. Kabacoff)
    出版社:人民邮电出版社
    出版时间:2023-05-01
    页数:534
    字数:821
    开本:128开
    纸张:胶版纸
    包装:平装
    是否套装:否
    【推荐语】
    1.深入讲解全球数据科学家、量化分析师以及数据从业者的"标配"——R语言.让你在面对工作与研究时如虎添翼、游刃有余.

    2.30 万中文版读者的认可与好评.数据分析教程重磅升级.全面扩充 ggplot2、tidyverse、 RStudio、R Markdown 用法.

    3.内容循序渐进.讲解深入浅出.丰富生动的真实案例.让你有效掌握 R 数据挖掘与数据可视化.

    4.提供完整实用的学习资源.易学易用.致力于帮助读者轻松上手R语言.学会统计分析及数据可视化的方法与技巧.
    【作者】
    [美]Robert I. Kabacoff 数据科学家、统计编程专家、R语言社区专家及Quick-R网站运营者.拥有30多 年的教学、科研和实践经验.曾在全球多家公司和科研机构任数据科学家.目前任教于美国文理学院维思大学(Wesleyan University).
    【内容】
    本书通过循序渐进的内容设计、深入浅出的技巧讲解.帮助读者轻松上手R语言.掌握统计分析及数据可视化的思路、方法与技巧.本书还会带领读者挑战真实世界中的数据难题.包括数据预测、数据挖掘以及动态数据报告的撰写等.值得一提的是.本书对 ggplot2 绘图功能进行了颇具深度的解读.另外.针对聚类、分类和时间序列分析等机器学习主题.本书增加了更多翔实的案例.
    ·数据清洗、数据管理及数据分析
    ·使用ggplot2绘图实现数据可视化
    ·调试程序及创建包
    ·R语言及tidyverse系列包的完整的学习资源
    【目录】
    第 一部分 入门
    第 1章 R介绍 3
    1.1 为何要使用R 4
    1.2 R的获取和安装 6
    1.3 R的使用 6
    1.3.1 新手上路 7
    1.3.2 使用 RStudio 9
    1.3.3 获取帮助 11
    1.3.4 工作区 12
    1.3.5 项目 13
    1.4 包 14
    1.4.1 什么是包 14
    1.4.2 安装包 14
    1.4.3 包的载入 15
    1.4.4 包的使用方法 15
    1.5 将输出用作输入:结果的复用 16
    1.6 处理大型数据集 16
    1.7 示例实践 17
    1.8 小结 18
    第 2章 创建数据集 19
    2.1 理解数据集 19
    2.2 数据结构 20
    2.2.1 向量 21
    2.2.2 矩阵 22
    2.2.3 数组 23
    2.2.4 数据框 24
    2.2.5 因子 26
    2.2.6 列表 28
    2.2.7 tibble 数据框 30
    2.3 数据的输入 31
    2.3.1 使用键盘输入数据 32
    2.3.2 从带分隔符的文本文件导入数据 33
    2.3.3 导入 Excel 数据 37
    2.3.4 导入 JSON 数据 37
    2.3.5 从网页抓取数据 37
    2.3.6 导入SPSS数据 38
    2.3.7 导入SAS数据 38
    2.3.8 导入Stata数据 39
    2.3.9 访问数据库管理系统 39
    2.3.10 通过 Stat/Transfer导入数据 40
    2.4 数据集的标注 41
    2.4.1 变量标签 41
    2.4.2 值标签 41
    2.5 处理数据对象的实用函数 41
    2.6 小结 42
    第3章 基本数据管理 43
    3.1 一个示例 43
    3.2 创建新变量 45
    3.3 变量的重编码 46
    3.4 变量的重命名 47
    3.5 缺失值 48
    3.5.1 重编码某些值为缺失值 49
    3.5.2 在分析中排除缺失值 49
    3.6 日期值 50
    3.6.1 将日期变量转换为字符型变量 52
    3.6.2 更进一步 52
    3.7 类型转换 52
    3.8 数据排序 53
    3.9 数据集的合并 54
    3.9.1 在数据框中添加列 54
    3.9.2 在数据框中添加行 54
    3.10 切分数据集 54
    3.10.1 选取变量 55
    3.10.2 剔除变量 55
    3.10.3 选入观测值 56
    3.10.4 subset()函数 57
    3.10.5 随机抽样 57
    3.11 使用dplyr包操作数据框 58
    3.11.1 基本的 dplyr 函数 58
    3.11.2 使用管道操作符对语句进行串接 61
    3.12 使用SOL语句操作数据框 61
    3.13 小结 62
    第4章 图形初阶 63
    4.1 使用gplot2包创建图形 64
    4.1.1 函数 ggplot() 64
    4.1.2 geom_函数 65
    4.1.3 分组 68
    4.1.4 标尺 69
    4.1.5 刻面 72
    4.1.6 标签 73
    4.1.7 主题 74
    4.2 ggplot2包的详细信息 75
    4.2.1 放置数据和映射选项 76
    4.2.2 将图形作为对象使用 77
    4.2.3 保存图形 78
    4.2.4 常见错误 79
    4.3 小结 80
    第5章 高级数据管理 81
    5.1 一个数据处理难题 81
    5.2 数值处理函数和字符处理函数 82
    5.2.1 数学函数 82
    5.2.2 统计函数 83
    5.2.3 概率函数 86
    5.2.4 字符处理函数 89
    5.2.5 其他实用函数 90
    5.2.6 将函数应用于矩阵和数据框 91
    5.2.7 数据处理难题的一套解决方案 92
    5.3 控制流 96
    5.3.1 重复和循环 97
    5.3.2 条件执行 98
    5.4 用户自定义函数 99
    5.5 数据重塑 101
    5.5.1 转置 101
    5.5.2 将宽表数据集格式转换为长表数据集格式 101
    5.6 数据汇总 103
    5.7 小结 105
    第二部分 基本方法
    第6章 基本图形108
    6.1 条形图108
    6.1.1 简单的条形图 109
    6.1.2 堆积、分组和填充条形图 110
    6.1.3 均值条形图 111
    6.1.4 条形图的微调 114
    6.1.1 简单的条形图109
    6.1.2 堆积、分组和填充条形图110
    6.1.3 均值条形图 111
    6.1.4 条形图的微调114
    6.2 饼图 119
    6.3 树形图 121
    6.4 直方图124
    6.5 核密度图126
    6.6 箱线图129
    6.6.1 使用并列箱线图进行跨组比较 130
    6.6.2 小提琴图 133
    6.7 点图134
    6.8 小结136
    第7章 基本统计分析 137
    7.1 描述性统计分析 138
    7.1.1 方法云集 138
    7.1.2 更多方法 139
    7.1.3 分组计算描述性统计量 141
    7.1.4 使用dplyr进行交互式汇总数据 143
    7.1.5 结果的可视化 145
    7.2 频数表和列联表 145
    7.2.1 生成频数表 145
    7.2.2 独立性检验 151
    7.2.3 相关性度量 153
    7.2.4 结果的可视化 153
    7.3 相关分析 153
    7.3.1 相关的类型154
    7.3.2 相关性的显著性检验156
    7.3.3 相关关系的可视化158
    7.4 t检验 158
    7.4.1 独立样本的t检验 158
    7.4.2 非独立样本的t检验 159
    7.4.3 多于两组的情况 160
    7.5 组间差异的非参数检验 160
    7.5.1 两组的比较 160
    7.5.2 多于两组的比较 161
    7.6 组间差异的可视化 163
    7.7 小结 163
    第三部分 中级方法
    第8章 回归 166
    8.1 回归的多面性 167
    8.1.1 OLS 回归的适用场景 167
    8.1.2 基础回顾 168
    8.2 OLS 回归168
    8.2.1 用函数 lm()拟合回归模型 169
    8.2.2 简单线性回归 170
    8.2.3 多项式回归 172
    8.2.4 多元线性回归 175
    8.2.5 带交互项的多元线性回归 177
    8.3 回归模型的诊断179
    8.3.1 标准方法 179
    8.3.2 改进的方法 181
    8.3.3 多重共线性 185
    8.3.1 标准方法179
    8.3.2 改进的方法181
    8.3.3 多重共线性185
    8.4 异常观测值186
    8.4.1 离群点186
    8.4.2 高杠杆值点187
    8.4.3 强影响点188
    8.5 改进措施 190
    8.5.1 删除观测点 191
    8.5.2 变量变换 191
    8.5.3 增删变量 193
    8.5.4 尝试其他方法 193
    8.6 选择“”的回归模型 193
    8.6.1 模型比较 193
    8.6.2 变量选择 194
    8.7 深层次分析 197
    8.7.1 交叉验证 197
    8.7.2 相对重要性 199
    8.8小结 201
    第9章 方差分析 202
    9.1 术语速成 202
    9.2 ANOVA模型拟合 204
    9.2.1 aov()函数 205
    9.2.2 表达式中各项的顺序 205
    9.3 单因素方差分析 206
    9.3.1 多重比较 208
    9.3.2 评估检验的假设条件 212
    9.4 单因素协方差分析 213
    9.4.1 评估检验的假设条件 215
    9.4.2 结果的可视化 215
    9.5 双因素方差分析 216
    9.6 重复测量方差分析 219
    9.7 多元方差分析 222
    9.7.1 评估检验的假设条件 223
    9.7.2 稳健多元方差分析 224
    9.8 用回归来做方差分析 225
    9.9 小结 227
    第 10章 功效分析228
    10.1 假设检验速览 228
    10.2 用pwr包做功效分析 230
    10.2.1 t 检验 231
    10.2.2 方差分析 233
    10.2.3 相关性 233
    10.2.4 线性模型 234
    10.2.5 比例检验 235
    10.2.6 卡方检验 235
    10.2.7 在新情况中选择合适的效应值 237
    10.3 绘制功效分析图 239
    10.4 其他功效分析包 240
    10.5 小结 241
    第 11章 中级绘图 242
    11.1 散点图 243
    11.1.1 散点图矩阵 245
    11.1.2 高密度散点图 248
    11.1.3 三维散点图 251
    11.1.4 旋转三维散点图 254
    11.1.5 气泡图 255
    11.2 折线图 257
    11.3 相关图 260
    11.4 马赛克图 264
    11.5 小结 267
    第 12章 重抽样与自助法 268
    12.1 置换检验 268
    12.2 用 coin 包做置换检验 270
    12.2.1 独立双样本和 K 样本检验 271
    12.2.2 列联表中的独立性 272
    12.2.3 数值变量间的独立性 273
    12.2.4 双样本和 K 样本检验 273
    12.2.5 深入探究 274
    12.3 用 lmPerm 包做置换检验 274
    12.3.1 简单回归和多项式回归 274
    12.3.2 多元回归 276
    12.3.3 单因素方差分析和协方差分析 276
    12.3.4 双因素方差分析 277
    12.4 置换检验点评 278
    12.5 自助法 278
    12.6 boot 包中的自助法 279
    12.6.1 对单个统计量使用自助法 . 280
    12.6.2 多个统计量的自助法 282
    12.7 小结 284
    第四部分 高级方法
    第 13章 广义线性模型 287
    13.1 广义线性模型和 glm()函数 288
    13.1.1 glm()函数 288
    13.1.2 连用的函数 289
    13.1.3 模型拟合和回归诊断 290
    13.2 Logistic 回归 291
    13.2.1 解释模型参数 293
    13.2.2 评价自变量对结果概率的影响 294
    13.2.3 过度离势 295
    13.2.4 扩展 296
    13.3 泊松回归 296
    13.3.1 解释模型参数 298
    13.3.2 过度离势 299
    13.3.3 扩展 300
    13.4 小结 302
    第 14章 主成分分析和因子分析 303
    14.1 R 中的主成分分析和因子分析 304
    14.2 主成分分析 305
    14.2.1 判断需提取的主成分数 306
    14.2.2 提取主成分 307
    14.2.3 主成分旋转 310
    14.2.4 获取主成分得分 311
    14.3 探索性因子分析 313
    14.3.1 判断需提取的公共因子数 314
    14.3.2 提取公共因子 315
    14.3.3 因子旋转 315
    14.3.4 因子得分 319
    14.3.5 其他与探索性因子分析
    相关的包 319
    14.4 其他潜变量模型 319
    14.5 小结 320
    第 15章 时间序列 322
    15.1 在 R 中生成时序对象 324
    15.2 时序的平滑化和季节项分解 326
    15.2.1 通过简单移动平均进行平滑处理 327
    15.2.2 季节项分解 328
    15.3 指数预测模型 334
    15.3.1 单指数平滑 334
    15.3.2 Holt 指数平滑和 Holt Winters 指数平滑 337
    15.3.3 ets()函数和自动预测 339
    15.4 ARIMA 预测模型 341
    15.4.1 概念介绍 341
    15.4.2 ARMA 和 ARIMA 模型 342
    15.4.3 ARIMA 模型的自动预测 347
    15.5 小结 348
    第 16章 聚类分析 349
    16.1 聚类分析的一般步骤 350
    16.2 计算距离 351
    16.3 层次聚类分析 353
    16.4 划分聚类分析 357
    16.4.1 K 均值聚类 357
    16.4.2 围绕中心点的划分 364
    16.5 避免不存在的聚类簇 365
    16.6 小结 369
    第 17章 分类 370
    17.1 数据准备 371
    17.2 Logistic 回归 372
    17.3 决策树 374
    17.3.1 经典决策树 374
    17.3.2 条件推断树 377
    17.4 随机森林 378
    17.5 支持向量机 381
    17.6 选择预测效果好的模型 384
    17.7 理解黑箱预测 387
    17.7.1 绘制细分图 388
    17.7.2 绘制 Shapley 值图 390
    17.8 深入探究 391
    17.9 小结 391
    第 18章 处理缺失数据的高级方法 393
    18.1 处理缺失值的步骤 394
    18.2 识别缺失值 395
    18.3 探索缺失值模式 396
    18.3.1 缺失值的可视化 396
    18.3.2 用相关性探索缺失值 400
    18.4 理解缺失数据的来由和影响 401
    18.5 合理推断不完整数据. 402
    18.6 删除缺失数据 403
    18.6.1 完整观测值分析(行删除) 403
    18.6.2 可获取的观测值分析(成对删除) 404
    18.7 单一插补 405
    18.7.1 简单插补 405
    18.7.2 k近邻插补 405
    18.7.3 missForest 插补 407
    18.8 多重插补 408
    18.9 处理缺失数据的其他方法 410
    18.10 小结 411
    第五部分 技能扩展
    第 19章 高级绘图 414
    19.1 修改标尺 415
    19.1.1 自定义坐标轴 415
    19.1.2 自定义颜色 420
    19.2 修改主题 424
    19.2.1 预置主题 424
    19.2.2 自定义字体 426
    19.2.3 自定义图例 428
    19.2.4 自定义绘图区 430
    19.3 添加标注 432
    19.3.1 给数据点添加标签 432
    19.3.2 给条形添加标签 434
    19.4 图形的组合 437
    19.5 绘制交互式图形 439
    19.6 小结 442
    第 20章 高级编程 443
    20.1 R 语言回顾 443
    20.1.1 数据类型 444
    20.1.2 控制结构 450
    20.1.3 创建函数 452
    20.2 使用环境 454
    20.3 非标准计算 456
    20.4 面向对象编程 458
    20.4.1 泛型函数 458
    20.4.2 S3 模型的局限性 460
    20.5 编写高效的代码 460
    20.5.1 高效的数据输入 460
    20.5.2 向量化 461
    20.5.3 准确调整对象的大小 462
    20.5.4 并行化 462
    20.6 调试 464
    20.6.1 常见的错误来源 464
    20.6.2 调试工具 465
    20.6.3 支持调试的会话选项 468
    20.6.4 使用 RStudio 的可视化调试器 471
    20.7 小结 473
    第 21章 创建动态报告 474
    21.1 用模板生成报告 476
    21.2 用R和R Markdown创建报告 478
    21.3 用R和LaTeX创建报告 483
    21.4 避免常见的R Markdown 错误 488
    21.5 深入探讨 489
    21.6 小结 489
    第 22 章 创建包 490
    22.1 edatools包 491
    22.2 创建包 492
    22.2.1 安装开发工具 493
    22.2.2 创建包项目 493
    22.2.3 添加函数 494
    22.2.4 添加函数文档 499
    22.2.5 添加一般帮助文件(可选) 501
    22.2.6 添加样本数据到包(可选) 502
    22.2.7 添加简介文档(可选) 503
    22.2.8 编辑 DESCRIPTION 文件 503
    22.2.9 生成并安装包 505
    22.3 分发包 508
    22.3.1 分发包的源文件 508
    22.3.2 提交到 CRAN 509
    22.3.3 托管到 GitHub 509
    22.3.4 创建包网站 511
    22.4 深入探讨 512
    22.5 小结 513
    附录A 图形用户界面 514
    附录B 自定义启动环境 516
    附录C 从 R 中导出数据 519
    附录D R中的矩阵运算 521
    附录E 本书中用到的包 523
    附录F 处理大型数据集 527
    附录G 更新 R 531
    后记:探索R的世界 533
    【媒体评论】
    第3版更新了R语言的新数据分析包.是提升数据分析能力的实战用书.可助力大家在编写R代码的过程中熟练掌握数据分析方法.

    ——王小宁 中国传媒大学数据科学与智能媒体学院副教授.统计之都秘书长

    如果您對本商品有什麼問題或經驗,請在此留下您的意見和建議!

    登入註冊 後檢視商品評論!

    相關商品

    sketchUp建筑室内外表现高级教程 陈国俊

    sketchUp建筑室内外表现高级教程 陈国俊

    书名:sketchUp建筑室内外表现高级教程(由湖北经济学院艺术..

    $12.00

    完美演绎——PPT高手速成 李宝运 马浩志

    完美演绎——PPT高手速成 李宝运 马浩志

    Office一线名师,手把手教你速成职场办公高手!职场热门、高频..

    $19.00

    51系列单片机原理、开发与应用实例 孙进平

    51系列单片机原理、开发与应用实例 孙进平

    书名:51系列单片机原理、开发与应用实例 ISBN:978750..

    $9.00

    Vue.js从入门到项目实战 刘汉伟

    Vue.js从入门到项目实战 刘汉伟

    免费提供配套源程序下载+精彩视频学习教程 开发理论与编码实践结合..

    $18.00

    人工智能启蒙 林达华

    人工智能启蒙 林达华

    书中为孩子们讲述:无处不在的人工智能书名:人工智能启蒙(第四册)..

    $13.00

    C码农笔记——从第一行代码到项目实战 周家安

    C码农笔记——从第一行代码到项目实战 周家安

    微软资深MVP 、C#知名专家力作 全面论述C# 语法基础、程..

    $34.00

    普通高等教育“十二五”规划教材 计算机常用工具软件项目教程 槐彩昌 主

    普通高等教育“十二五”规划教材 计算机常用工具软件项目教程 槐彩昌 主

    书名:普通高等教育“十二五”规划教材(高职高专教育) 计算机常用..

    $9.00